GENIUS

GT177yESO-K Specifications General-Purpose Hall Effect Latch

GT177yESO-K Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points.

The device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, Schmitt trigger, open-collector output to sink up to 100mA. A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 3.5V to 20 V.

The package type is in a lead Halogen Free version was verified by third party organization.

Features and Benefits

- Temperature compensation.
- Wide operating voltage range.
- Open-Collector pre-driver.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Hall IC application
- Fan motor application
- BLDC motor application

Ordering number

Part No.	Temperature Suffix	Package Type
GT177yESO-K	$(-25^{\circ}C \text{ to} + 85^{\circ}C)$	(SOT-23)

Functional Diagram

GEN^îUS

GT177yESO-K Specifications General-Purpose Hall Effect Latch

Absolute Maximum Ratings At (Ta=25 °C)

Characteristics			Values	Unit
Supply voltage,(Vcc)		30	V	
Reverse Vcc Polarity Voltage,(Vcc)			-30	V
Magnetic flux density	Magnetic flux density		Unlimited	Gauss
Output "on" current,(<i>Iour</i>)	Continuous		200	mA
Operating Temperature Range, (Ta)		-40 to +85	°C	
Storage temperature range, (Ts)		-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
		(<i>θja</i>)	543	°C/W
i nermai kesistance		($ heta jc$)	410	°C/W
Package Power Dissipation, (P_D)		230	mW	

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters	$T_{4}=\pm 25^{\circ}C$	$V_{DD} = 12V$
DC Operating I drameters	$IA = \pm 25$ C,	$VDD = I \Delta V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (VCC)	Operating	3.5		20.0	V
Supply Current, (ICC)	B <bop< td=""><td>7</td><td>14</td><td>25.0</td><td>mA</td></bop<>	7	14	25.0	mA
Output Saturation Voltage, (Vsat)	$I_{OUT} = 5 \text{ mA}, \text{B} > B_{OP}$		600.0	950.0	mV
Output Leakage Current, (Ioff)	$I_{OFF} B < B_{RP}, V_{OUT} = 24V$		< 0.1	10.0	μΑ
Output Rise Time, (TR)	$R_L=820\Omega, C_L=20pF$		3.0	10.0	μS
Output Fall Time, (TF)	$R_L=820\Omega; C_L=20pF$		0.3	1.5	μS
Electro-Static Discharge	HBM	4			KV

GT177yESO-K A Magnetic Specifications

DC Operating Parameters : Ta=+25 °C, Vcc=12V

Parameter	Symbol	Min.	Тур.	Max.	Units
Operate Point	B _{OP}	30		65	Gauss
Release Point	B_{RP}	-65		-30	Gauss
Hysteresis	B _{HYS}		70		Gauss

GT177yESO-K B Magnetic Specifications

DC Operating Parameters : Ta=+25 °C, Vcc=12V

Parameter	Symbol	Min.	Тур.	Max.	Units
Operate Point	B _{OP}	-5		90	Gauss
Release Point	B_{RP}	-90		5	Gauss
Hysteresis	B _{HYS}		70		Gauss

GT177yESO-K C Magnetic Specifications

DC Operating Parameters : $Ta=+25^{\circ}C$, Vcc=12V

Parameter	Symbol	Min.	Тур.	Max.	Units
Operate Point	B _{OP}	-20		90	Gauss
Release Point	B_{RP}	-90		20	Gauss
Hysteresis	B _{HYS}		70		Gauss

Typical application circuit

Sensor Location, Package Dimension and Marking

Package (SOT-23)

(Top View)

NOTES:

- 1. PINOUT (See Top View at left :)
 - $\begin{array}{ccc} \text{Pin 1} & \text{V}_{\text{CC}} \\ \text{Pin 2} & \text{Out} \end{array}$
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Hall Plate Chip Location

(Bottom view)

(For reference only) Land Pattern

