# GENIUS

## *GT50B Specifications* Ratio-metric Linear Hall Effect Sensor

GT50B, a linear Hall-effect sensor, is composed of Hall sensor, linear amplifier and Totem-Pole output stage. It features low noise output, which makes it unnecessary to use external filtering. It also can provide increased temperature stability and accuracy. The linear Hall sensor has a wide operating temperature range of  $-40^{\circ}$ C to  $+105^{\circ}$ C, appropriate for commercial, consumer, and industrial environments.

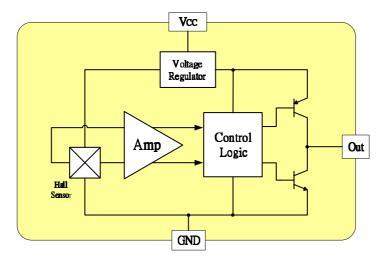
The high sensitivity of Hall-effect sensor accurately tracks extremely weak changes in magnetic flux density. The linear sourcing output voltage is set by the supply voltage and in proportion of vary of the magnetic flux density. Typical operation current is 2.5 mA and operating voltage range is 3.0 volts to 6.5 volts.

The UA package style available provides magnetically optimized solutions for most applications. The SO package is the industrial standard package in SMT process.

#### Features and Benefits

- Operating Voltage Range: 3.0V~6.5V
- Power consumption of 2.5 mA at 5  $V_{DC}$  for energy efficiency
- Low-Noise Operation
- Linear output for circuit design flexibility
- Totem-Pole for a stable and accurate output
- Responds to either positive or negative gauss
- Small package for SMD
- Magnetically Optimized Package for SIP
- Cost competitive
- Robust ESD performance
- RoHS compliant 2011/65/EU and Halogen Free

#### **Applications**


- Current sensing
- Motor control
- Position sensing
- Magnetic code reading
- Rotary encoder
- Ferrous metal detector
- Vibration sensing
- Liquid level sensing
- Weight sensing

#### Ordering number

| Part No. | Temperature Suffix                        | Package Type |  |
|----------|-------------------------------------------|--------------|--|
| GT50BEUA | $(-40^{\circ}C \text{ to} + 85^{\circ}C)$ | UA(TO-92S)   |  |
| GT50BESO | $(-40^{\circ}C \text{ to} + 85^{\circ}C)$ | SO (SOT-23)  |  |

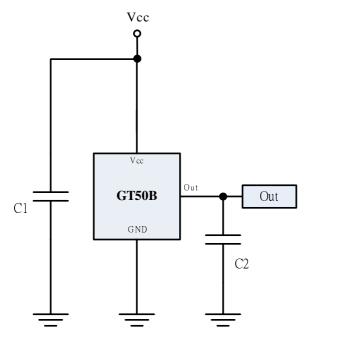


## Functional Diagram



## Absolute Maximum Ratings At (Ta=25 °C)

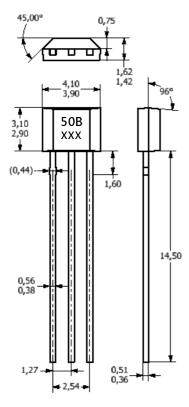
| Characteristics                                      | Values                | Unit      |           |  |  |
|------------------------------------------------------|-----------------------|-----------|-----------|--|--|
| Supply Voltage,(Vcc)                                 | 8                     | V         |           |  |  |
| Reverse Voltage, (Vcc)                               | -0.5                  | V         |           |  |  |
| Magnetic Flux Density                                |                       | Unlimited | Gauss     |  |  |
| Output Current, (Iour)                               | 10                    | mA        |           |  |  |
| Operating Temperature Range, (Ta)                    | -20 to +85            | °C        |           |  |  |
| Storage Temperature Range, ( <i>Ts</i> )             | -65 to +150           | °C        |           |  |  |
| Maximum Junction Temp,( <i>Tj</i> )                  | 150                   | °C        |           |  |  |
| Thermoel Desister of                                 | $(\theta_{ja})$ UA/SO | 206 / 543 | °C/W      |  |  |
| Thermal Resistance                                   | $(\theta jc)$ UA/SO   | 148 / 410 | °C/W      |  |  |
| Package Power Dissipation, ( <i>P</i> <sub>D</sub> ) |                       | 606/      | 606 / 230 |  |  |


Note: Do not apply reverse voltage to Vcc and Vour Pin, It may be caused for Miss function or damaged device.

### **Electrical Specifications**

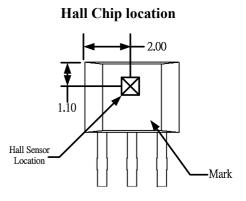
| Parameters                                | <b>Test Conditions</b> | Min       | Тур       | Max | Units |
|-------------------------------------------|------------------------|-----------|-----------|-----|-------|
| Supply Voltage,(Vcc)                      | Operating              | 3.0       |           | 6.5 | V     |
| Supply Current,( <i>Icc</i> )             | B=0 Gauss              |           | 2.5       | 5.0 | mA    |
| Output Current ,(Io)                      | Vcc>3V                 | 1.0       | 1.5       |     | mA    |
| Null Output Voltage, (V <sub>Null</sub> ) | B=0 Gauss              | 2.3       | 2.5       | 2.7 | V     |
| Output Bandwidth, (Bw)                    |                        |           | 20        |     | kHz   |
| Output Voltage Span, (Vos)                |                        | 2.95      | 3.2       |     | V     |
| Magnetic Range Gauss                      |                        | $\pm 500$ | $\pm 800$ |     | Gauss |
| Linearity                                 | % of Span              |           | 0.7       |     |       |
| Response Time                             |                        |           | 3         |     | uS    |
| Sensitivity                               |                        | 1.8       |           | 2.2 | mV/G  |
| Electro-Static Discharge                  | HBM                    | 4         |           |     | kV    |



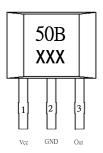

## Typical application circuit



| C1 | : | 1000PF |
|----|---|--------|
| C2 | : | 10PF   |


## *Sensor Location, Package Dimension and Marking* GT50B Package

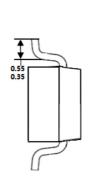


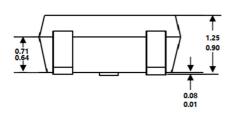



#### NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:
- Pin 1 Vcc
- Pin 2 GND
- Pin 3 Output

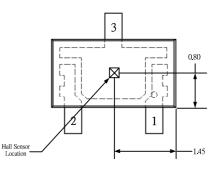



Output Pin Assignment (Top view)






3.00 2.60


1





2

Hall Plate Chip Location (Bottom view)



#### NOTES:

- 1. PINOUT (See Top View at left :)
  - Pin 1 V<sub>CC</sub>
  - Pin 2 Output
  - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum