

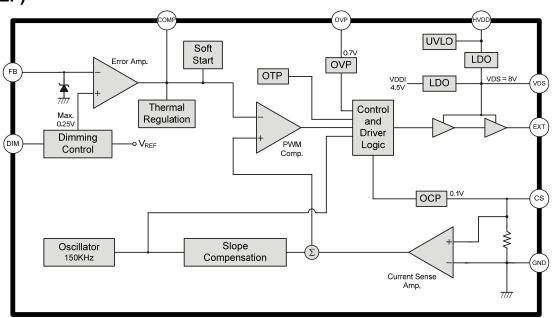
| 文件名稱          | 文件日期     |     |  |  |
|---------------|----------|-----|--|--|
| ED7200 座 田芸公田 | 20201210 |     |  |  |
| FP7209 應用說明   | 版別       | V06 |  |  |

## 一般描述

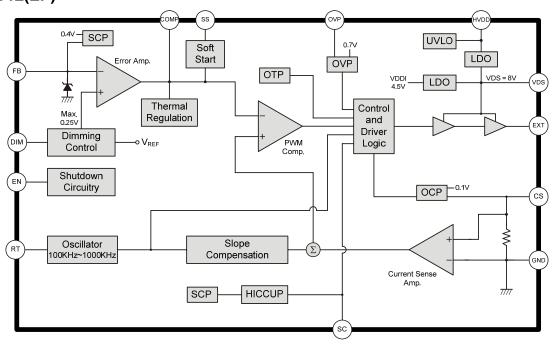
FP7209 是一顆非同步升壓 LED 驅動 IC,控制外部開關 NMOS,輸入低啓動電壓 2.8V,工作電壓 5V,V<sub>FB</sub> 反饋電壓 0.25V,反饋電壓低,取樣電阻功率損耗也降低,整體轉換效率提升。軟啓動時間透過外部電容調整,LED 開路保護透過外部電阻調整,LED 短路保護透過 SC 控制 NMOS;調光控制 DIM Pin,DIM 內部有濾波器,可以實現線性與數位調光;輸入透過分壓電阻接到 EN pin,可以控制 FP7209 啟動與關閉電壓準位;有過電流保護,避免開關 NMOS 電流過大造成損壞;內置過熱保護功能。

#### 特色

- ▶ 啓動電壓 2.8V
- ➤ 工作電壓範圍 5V~24V
- ▶ V<sub>FB</sub> 反饋電壓 0.25V
- ▶ 線性與數位調光控制
- ▶ 關機耗電流最大 6µA
- ▶ 固定工作頻率 150kHz/ SOP-8L(EP)
- ▶ 可調工作頻率 100kHz ~ 1000kHz/ TSSOP-14L(EP)
- ➤ 可調軟啓動時間/ TSSOP-14L(EP)
- ▶ 可調輸入低電壓保護(UVP)/ TSSOP-14L(EP)
- ➤ LED 開路保護(OVP)
- ▶ LED 短路保護(SCP)/ TSSOP-14L(EP)
- ▶ 開關 NMOS 過電流保護(OCP)
- ▶ 過熱降 LED 電流保護
- ▶ 過溫保護(OTP)
- ▶ 封裝 SOP-8L(EP), TSSOP-14L(EP)


### 應用範圍

- ➤ LED 模組
- ▶ 顯示器背光
- ▶ 車燈
- ▶ 手持式照明




# IC 內部方塊圖

# SOP-8L(EP)



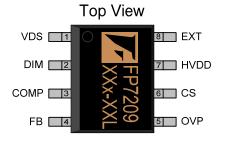
## TSSOP-14L(EP)

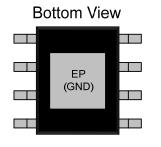




# 文件日期

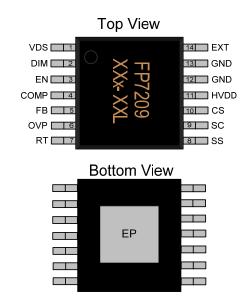
20201210


V06


# FP7209 應用說明

版別

# PIN 腳描述


# SOP-8L(EP)





| Name | No.   | 1/0 | Description                           |
|------|-------|-----|---------------------------------------|
| VDS  | 1     | Р   | 產生 8V 提供內部電路與 EXT Pin 驅動<br>NMOS 閘極使用 |
| DIM  | 2     | I   | 開關與調光控制                               |
| COMP | 3     | 0   | 迴路補償腳                                 |
| FB   | 4     | I   | 反饋電壓                                  |
| OVP  | 5     | I   | 輸出過電壓保護,外部接電阻調整                       |
| CS   | 6     | I   | 電感峰值電流檢測與過電流偵測                        |
| HVDD | 7     | Р   | 輸入電源,工作電壓 5V~24V                      |
| EXT  | 8     | 0   | PWM 開關控制,連接到 NMOS 閘極                  |
| GND  | 9(EP) | Р   | 底部散熱片是 IC 的地,一定要連接到地                  |

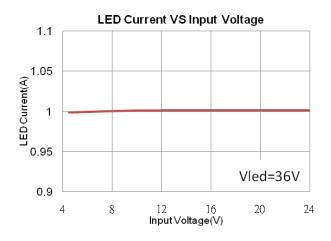
# TSSOP-14L(EP)

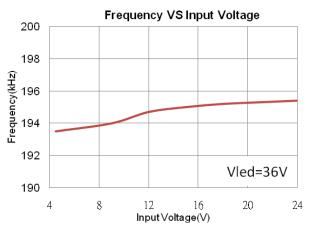


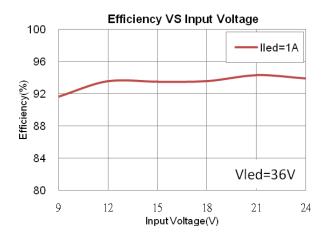
| Name | No. | I/O | Description                           |
|------|-----|-----|---------------------------------------|
| VDS  | 1   | Р   | 產生 8V 提供內部電路與 EXT Pin 驅動<br>NMOS 閘極使用 |
| DIM  | 2   | I   | 線性與數位調光控制,開關控制                        |
| EN   | 3   | I   | 開關控制                                  |
| COMP | 4   | 0   | 迴路補償腳                                 |
| FB   | 5   | I   | 反饋電壓                                  |
| OVP  | 6   | I   | 輸出過電壓保護,外部接電阻調整                       |
| RT   | 7   | I   | 工作頻率外部接電阻調整                           |
| SS   | 8   | I   | 軟啓動外部接電容調整時間                          |
| SC   | 9   | 0   | LED 短路保護控制                            |
| CS   | 10  | I   | 電感峰值電流檢測與過電流偵測                        |
| HVDD | 11  | Р   | 輸入電源,工作電壓 5V~24V                      |
| GND  | 12  | Р   | IC 的地                                 |
| GND  | 13  | Р   | IC 的地                                 |
| EXT  | 14  | 0   | PWM 開關控制,連接到 NMOS 閘極                  |
| EP   | 15  | -   | Exposed PAD 接到地                       |

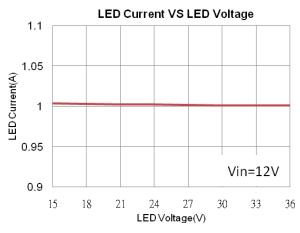


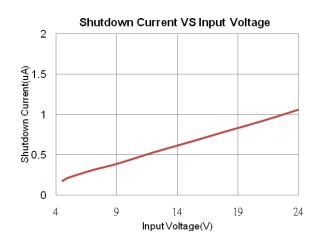
# 文件日期

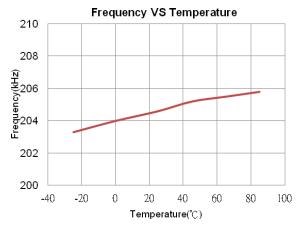

# FP7209 應用說明


20201210


版別


V06


# 特性曲線





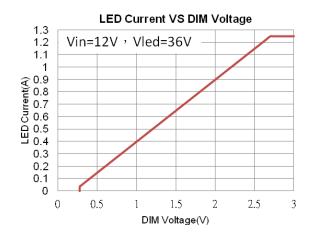


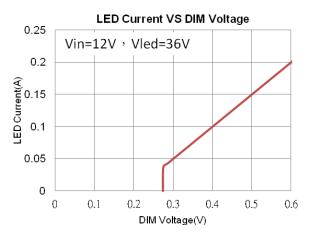


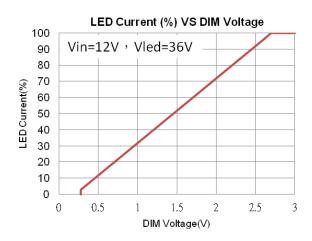


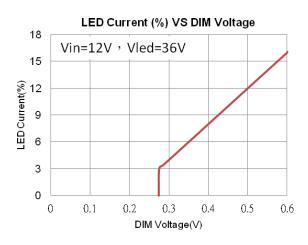


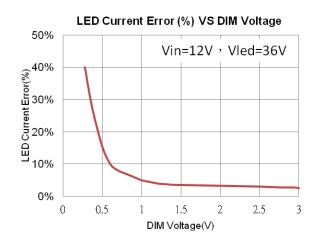


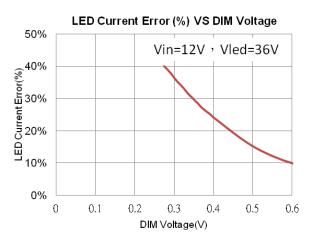


文件日期


20201210


版別


V06


# FP7209 應用說明







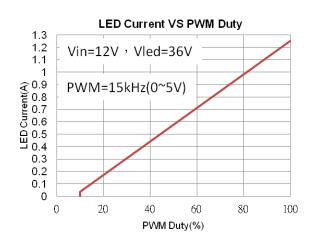


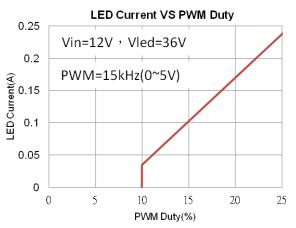


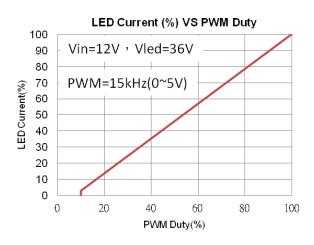


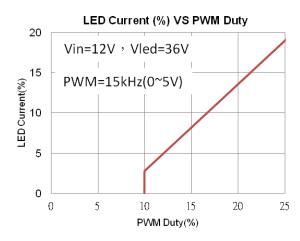


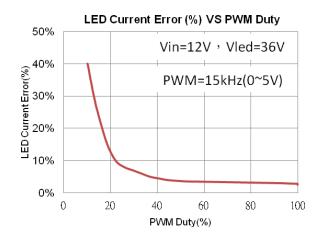

FP7209 應用說明

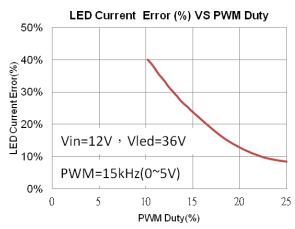

# 文件日期


20201210


V06


版別


#EDI





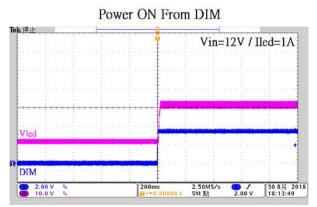


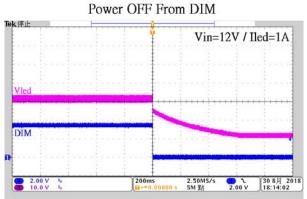


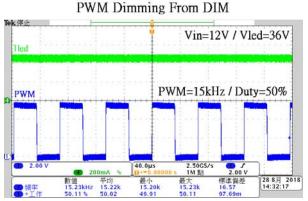


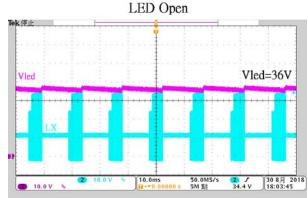


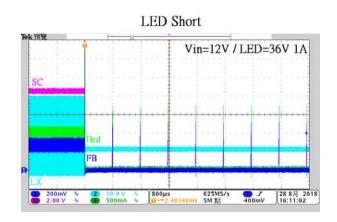




## 文件日期


FP7209 應用說明


20201210


版別


V06





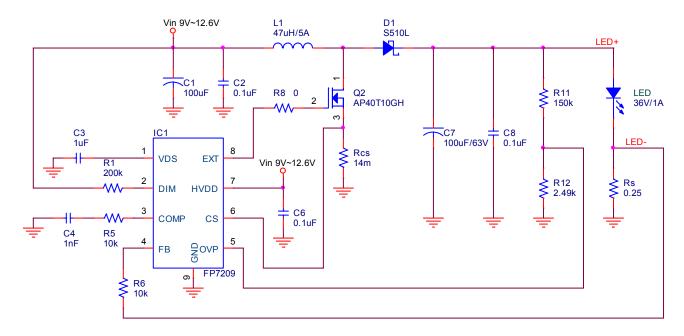


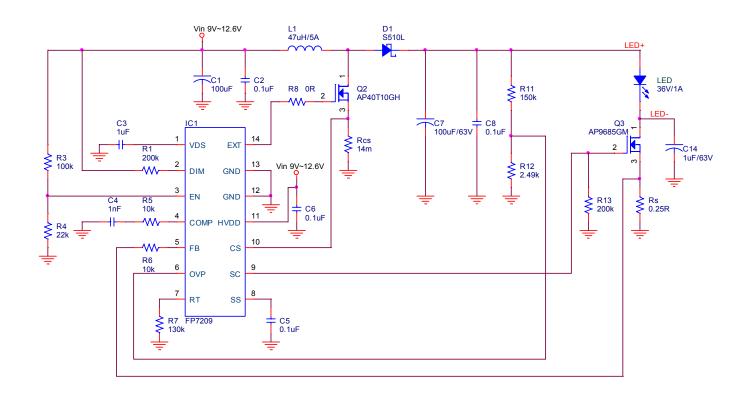






# 文件名稱 文件日期


# FP7209 應用說明


20201210

版別

V06

# 應用電路圖







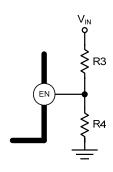
| 文件名稱          | 文件名稱     |     |  |  |  |  |  |
|---------------|----------|-----|--|--|--|--|--|
| ED7200 座 田芸公田 | 20201210 |     |  |  |  |  |  |
| FP7209 應用說明   | 版別       | V06 |  |  |  |  |  |

## 應用元件

- ▶ C1,C7:輸入與輸出穩壓電容。
- ▶ C2.C6.C8: 高頻雜訊濾波電容。
- ➤ C3:輸入電源接 HVDD 經過內部穩壓管到 VDS 產生 8V,此電壓會提供內部電路與 EXT Pin 驅動外部 Q2 的閘極,需要加穩壓電容。
- ▶ C4,R5:系統的補償迴路,關係到系統的穩定度。
- ▶ C5:軟啟動電容,改變電容值調整啟動時間。
- ➤ C14: LED 正負兩端短路會產生高壓突波,造成 Q3 損壞,在 LED 負端與地之間加 1uF 電解電容吸收突波,電容耐壓大於 LED 開路電壓的 1.3 倍。
- ▶ L1:電感具有儲能與濾波功用,感值越大電感漣波越小,相對感值越小漣波越大。選用電感需注意電感是否適合高頻操作,及電感額定飽和電流值。
- ▶ D1:當 Q2 截止時, D1 蕭特基管導通提供電感放電迴路。
- ▶ Q2:使用內阻低的 NMOS, Drain 端高電壓等於輸出 36V, 耐壓選用 36V的 1.5倍。
- ▶ Q3:LED 短路保護 NMOS,發生短路阻隔大電流路徑。
- ▶ R1:接在 Vin 與 DIM Pin 之間,將 DIM 電壓提高超過 2.7V,讓 FB 電壓固定 0.25V。
- ▶ R3、R4:分壓電阻設定 FP7209 開啟與關閉電壓。
- ▶ R6:FB 內部穩壓管限流電阻,避免高壓大電流將 FB 內部元件擊傷。
- ▶ R7:調整工作頻率,電阻不接(懸空),預設頻率 150kHz。
- ▶ R8:預留作為 EMI 對策。
- ➤ R11.R12:分壓電阳設定輸出過電壓保護。
- ▶ R13:短路保護 NMOS(Q3)的 Gate 對地下拉電阻。
- Rcs:電感峰值檢測與過電流偵測電阻。
- ▶ Rs:取樣電阻接到 FB Pin,設定 LED 電流,V<sub>FB</sub> 除以 R<sub>S</sub>等於 LED 電流。



| 文件名稱        | 文件日期     |     |  |  |
|-------------|----------|-----|--|--|
| FP7209 應用說明 | 20201210 |     |  |  |
| FF1203 應用說明 | 版別       | V06 |  |  |


#### 功能說明

#### a. 軟啓動

SS Pin 接電容到地,可以調整軟啟動時間;當 FP7209 啟動時,利用軟啟動限制 EXT pin 的 PWM 佔空比大小,讓佔空比緩慢打開,避免瞬間輸入湧浪電流過大;內部定電流 3.5µA 對外部電容充電。

#### b. EN 開關控制

如下分壓電阻 R3、R4 連接 Vin 與 EN,可以調整 FP7209 開啟與關閉電壓,當 EN 超過 1.5V 開啟,EN 低於 1.3V 關閉,遲滯電壓 0.2V 避免 IC 反覆開關;EN 低於 1.3V 時 EXT PWM 訊號、VDS 電壓、SC 訊號都會被關閉,HVDD 耗電流小於 6μA;不設定開啟與關閉電壓,R3 接 200k $\Omega$ 、R4 不接,EN 內部拑位電路限制  $V_{EN}$ <5.5V,此外 EN Pin 不能空接(懸空)。HVDD 電壓低於 5V,不能使用 R3、R4 控制 EN 開關,例如單節鋰電池 3V~4.2V,輸出端接到 HVDD,當 Vin 降低 EN 關閉,輸出不升壓,HVDD 趨近 Vin,就會低於 5V。



#### c. FB 電壓設定

不調光時,在 Vin 與 DIM 之間接 200k $\Omega$ ,將 DIM 電壓提升超過 2.7V,讓 FB 反饋電壓固定在 0.25V,DIM Pin 不能空接(縣空)。

### d. 線性調光控制

直流電壓連接到 DIM Pin 做調光控制,如下公式改變 DIM 電壓,就能改變 FB 電壓,調整 LED 電流, $V_{DIM}$  大於 0.275V 開始產生  $V_{FB}$ =7.5mV,當  $V_{DIM}$ 等於 2.7V, $V_{FB}$ 是最大 0.25V,LED 電流範圍 3%~100%, $V_{DIM}$ 大於 2.7V,會被 DIM 內部穩壓管限制在 2.7V,即使  $V_{DIM}$ 到 5.5V,都 是用 2.7V代入公式計算 LED 電流; $V_{DIM}$ 低於 0.05V,FP7209 完全關閉,HVDD耗電流低於  $6\mu A$ 。

$$V_{FB} = \frac{V_{DIM} - 0.2V}{10}$$
,  $I_{LED} = \frac{V_{FB}}{R_S}$ 

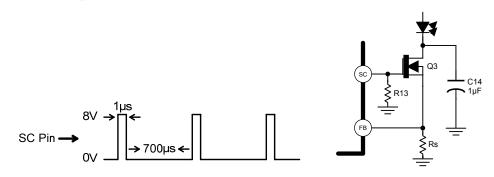


| 文件名稱                        文件日期 |          |     |  |  |  |  |  |
|----------------------------------|----------|-----|--|--|--|--|--|
| ED7200 座 田芸公田                    | 20201210 |     |  |  |  |  |  |
| FP7209 應用說明                      | 版別       | V06 |  |  |  |  |  |

#### e. 數位調光控制

PWM 訊號連接到 DIM Pin 調光控制,DIM 內部先有穩壓管限制最高電壓 2.7V,再經過濾波器將 PWM 濾成直流,如下公式,改變 PWM 佔空比(Duty),就能改變內部  $V_{\text{DIM}}(V_{\text{DIM}}=V_{\text{PWM}}\times \text{Duty})$ ,當  $V_{\text{PWM}}$  振幅超過 2.7V 被內部穩壓管限制在 2.7V,即使  $V_{\text{PWM}}$  到 5.5V, $V_{\text{PWM}}$  都是用 2.7V 代入公式計算 LED 電流;PWM 佔空比  $10.2\%\sim100\%$ , $V_{\text{FB}}$ 是  $7.5\text{mV}\sim250\text{mV}$ ,LED 電流範圍  $3\%\sim100\%$ 。PWM 頻率大於 15kHz。當輸入電壓低於 5V,調光 PWM 佔空比起始值從 10.2% 變成約 13%,LED 電流 3% 6%。

$$V_{FB} = \frac{V_{PWM} \times Duty - 0.2V}{10} , I_{LED} = \frac{V_{FB}}{R_S}$$


#### f. 過電壓保護(OVP)

當 LED 開路, FB Pin 由取樣電阻 Rs 到地, FB 電壓 0V, EXT 會將佔空比開大, 導致輸出電壓衝高,擊傷升壓元件,將分壓電阻 R11 與 R12 接到 LED+與 OVP Pin, OVP Pin 超過 0.7V 佔空比關閉,低於 0.7V 再打開,避免輸出電壓衝高,利用以下公式設定輸出 Vove。

$$V_{OVP} = 0.7V \times \left\langle 1 + \frac{R11}{R12} \right\rangle$$
R11
$$R12$$

## g. 短路保護(SCP)

LED 發生短路,大電流流過 Q3 與 Rs,Rs 連接到 FB Pin,當 FB 超過 0.4V(中心值),SC 會下拉將 Q3 關閉,停止 700μs 再打開(停止 700μs 時也會將 EXT 訊號關閉),若 FB 仍超過 0.4V 持續以上動作,若 FB 低於 0.4V,恢復正常 SC=8V 讓 Q3 導通。LED 正負兩端短路會產生高壓突波,造成 Q3 損壞,在 LED 負端與地之間加 C14 電解電容 1μF 吸收突波,電容耐壓大於 LED 開路電壓的 1.3 倍。

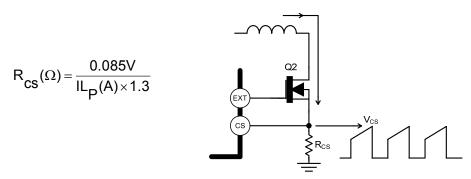




20201210

文件日期

FP7209 應用說明


版別 V06

#### h. 過熱與過溫保護

IC 內部晶片溫度達到 135℃, LED 電流開始降低,若溫度持續升高,電流會持續下降,晶片溫度達到 150℃,將 EXT 訊號關閉,直到晶片溫度降低為 130℃再將 EXT 打開。

### i. 過電流保護

過電流檢測電阻  $R_{CS}$ 連接 Q2S端與地之間,Q2 打開電感電流通過  $R_{CS}$ 產生  $V_{CS}$ ,CS 檢測  $V_{CS}$  峰值電壓,以下公式計算  $R_{CS}$ ,0.085 V 是 CS 檢測電壓下限值, $IL_P$  是電感峰值電流,常數 1.3 是提供 30%的誤差範圍,避免  $R_{CS}$ ,電感,頻率誤差,而誤觸發過電流保護。當觸發過電流保護, EXT 佔空比會縮小,限制電感電流,避免 Q2 損傷。



### 電感平均電流(輸入電流)

$$ILavg = \frac{Vout \times Iout(max)}{Vin \times Fff}$$

Vin 輸入電壓, Vout 輸出電壓(LED 電壓), lout(max)輸出最大電流(LED 電流), Eff 轉換效率

#### 電感峰對峰值電流

$$ILpp = \left\langle \frac{Vin}{Vout} \right\rangle^2 \times \left\langle \frac{Vout - Vin}{Fs \times Iout(max)} \right\rangle \times \left\langle \frac{Eff}{L} \right\rangle \times ILavg$$

Fs 工作頻率, L 電感

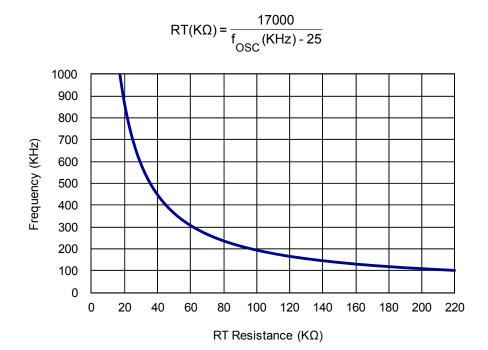
#### 電感峰值電流

$$ILp = ILavg + \frac{ILpp}{2}$$

#### j. 工作頻率

RT Pin 與地之間接電阻調整工作頻率,頻率範圍 100kHz ~ 1000kHz,對應電阻 220k $\Omega$ ~ 17k $\Omega$ ;當 RT Pin 不接電阻(懸空),FP7209 內部預設頻率 150kHz,以下是電阻值對應工作頻率圖與計算公式。




# 文件名稱 文件日期

## FP7209 應用說明

20201210

版別

V06



## 應用說明

#### a. 輸入低電壓應用

輸入電壓會低於 5V,像是單節鋰電池,將 HVDD Pin 接到輸出 LED+,並且注意 LED 開路 OVP 電壓設定不能超過 HVDD 工作電壓 24V;輸入 5V~8.5V,且考量 OVP 電壓接近或超過 24V,將輸入電壓連接到 HVDD 與 VDS Pin,可以提升轉換效率;輸入高於 8.5V,接到 HVDD Pin,不要接到 VDS Pin。

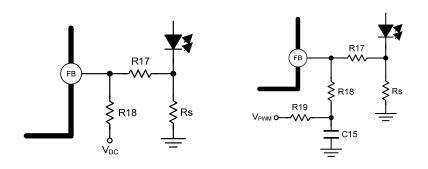
#### b. 電感計算

電感值計算公式,Vin 輸入電壓,Vout 輸出電壓(LED 總電壓),Fs 工作頻率,lout(LED 最大電流),Eff 轉換效率,r 電感峰對峰值  $\Delta$ IL 與電感平均電流的比例(一般設定在 0.3~0.5)。舉例: Vin=10V、Vout=36V、lout=1A(max)、Fs=150kHz、Eff=90%、r=0.3,代入公式求得電感 L=40 $\mu$ H,選用  $47\mu$ H。

$$L = \left\langle \frac{Vin}{Vout} \right\rangle^2 \times \left\langle \frac{Vout - Vin}{Fs \times Iout(max)} \right\rangle \times \left\langle \frac{Eff}{r} \right\rangle$$

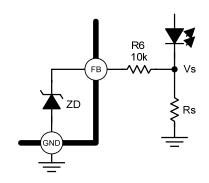
## c. 電容與蕭特基管選用

MLCC 陶瓷電容選用 X5R,X7R 材質,不建議使用 Y5V 材質(內阻高,電容值隨溫度變化大); 蕭特基管選用低導通電壓,平均電流大於輸入與電感峰值電流,耐壓大於輸出電壓的 1.5 倍。




| 文件名稱          | 文件日期     |     |  |  |
|---------------|----------|-----|--|--|
| ED7200 座 H=公H | 20201210 |     |  |  |
| FP7209 應用說明   | 版別       | V06 |  |  |

## d. FB Pin 調光控制


調光也可以透過 FB Pin,提供直流與 PWM 訊號,改變  $V_{DC}$ 與  $V_{PWM}$  Duty,就可以調整 LED 電流,電路與公式如下。當輸入電壓低於 5V,不能控制 FB Pin 調光。

$$I_{\text{LED}} = \frac{V_{\text{FB}} - \frac{R_{17} \times (V_{DC} - V_{FB})}{R_{18}}}{\text{Rs}} \cdot I_{\text{LED}} = \frac{V_{\text{FB}} - \frac{R_{17} \times (V_{PWM} \times Duty - V_{FB})}{R_{18} + R_{19}}}{\text{Rs}}$$



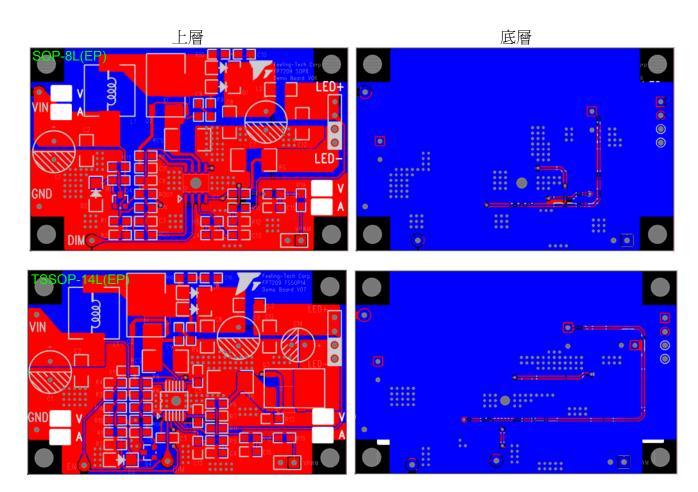
## e. FB Pin 保護電路

LED 短路 Vs 電壓衝高,若超過 FB Pin 耐壓會造成 IC 損壞,在 FB 與 Rs 之間加 R6 限流,FP7209 內部 FB 與 GND 之間有穩壓管 ZD,防止 IC 損壞。





# 文件日期

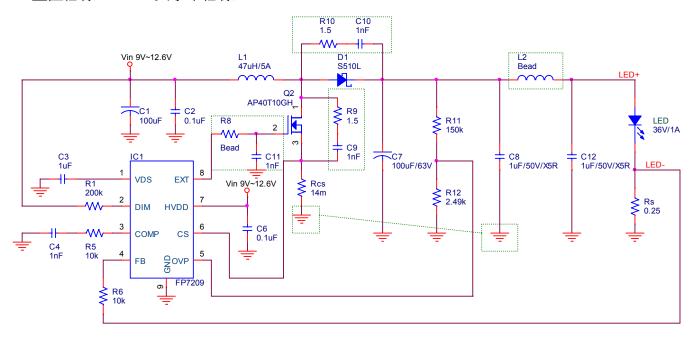

## FP7209 應用說明

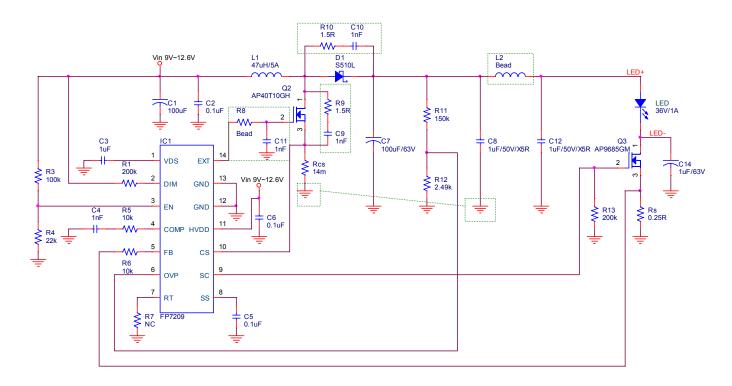
20201210

版別

V06

## f. 佈板說明





- ▶ 大電流路徑走線要粗,鋪銅走線最佳。
- ▶ 開關切換連接點 L1、Q2 的 Drain 與 D1,走線要短與粗,鋪銅走線最佳。
- ▶ 輸入電容 C6 靠近 HVDD 與 GND Pin,達到穩壓與濾波功效。
- ▶ 取樣電阻 Rs 靠近 FB 與 GND Pin。
- ▶ 電感電流檢測電阻 R<sub>CS</sub> 靠近 CS 與 GND Pin。
- ▶ R11,R12 靠近 OVP 與 GND Pin。
- ▶ FB Pin 遠離開關切換點 L1、Q2 的 Drain 與 D1,避免受到干擾。
- ▶ 輸入電容 C1,C2 的地、輸出電容 C7,C8 與 R<sub>CS</sub> 的地,鋪銅走線,上下層地多打洞連接。
- ▶ 輸出電容 C7,C8 的地一定要靠近 Rcs 的地,可以降低開關切換突波,降低輸出高頻雜訊。
- ▶ 板子多餘空間建議鋪地。



## g. EMI 對策

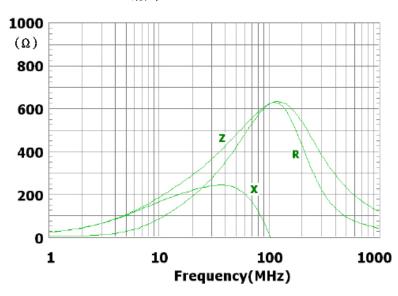
R8 使用磁珠規格如下, C11=1nF 靠近 Q2 Gate 端, R9 與 C9 兩者靠近, 且要靠近 Q2 的 Drain 與 Source 端; R10 與 C10 兩者靠近, 且要靠近 D1, 輸出電容 C8 的地一定要靠近 Rcs 的地, L2 使用磁珠規格如下。測試 Vin=12V、VLED=10 串 2 並白光 LED、ILED=1A, 如下測試結果垂直低標 4.69dB 與水平低標 10.64dB。







# 文件日期

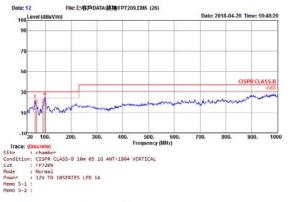

FP7209 應用說明

20201210

版別

V06

## 磁珠 FI321611U601




## 垂直

## 水平



No. 8 Lane 724, Bo Ai Street, Zhubei City, Hsin Chu Hsien 302, Taiwan, R.O.C. TEL:03-656-9065 FAX:03-656-9085



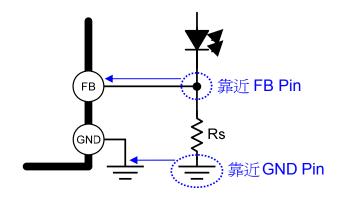
|   | Freq  | Level  | Limit<br>Line |        |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark | Pol/Phase |
|---|-------|--------|---------------|--------|-------|------|-------|------------------|-------|-------|--------|-----------|
| - | MHz   | d8uV/m | d8uV/m        | ₫B     | dBuV  | dB   | d8/m  | ₫B               | - cm  | deg   |        |           |
| 1 | 59.10 | 21.99  | 30.00         | -8.01  | 41.42 | 1.27 | 12.81 | 32.41            | 100   | 99    | Peak   | VERTICAL  |
| 2 | 65.89 | 17.18  | 30.00         | -12.82 | 37.49 | 1.10 | 12.60 | 32.40            | 100   | 322   | Peak   | VERTICAL  |
| 3 | 91.11 | 18.07  | 38.68         | -11.93 | 37.96 | 8.79 | 15.45 | 32.38            | 100   | 46    | Peak   | VERTICAL  |
| 4 | 98.87 | 25.31  | 30.00         | 4.69   | 42.88 | 0.83 | 16.91 | 32.37            | 100   | 261   | Peak   | VERTICAL  |



No. 8 Lane 724, Bo Ai Street, Zhubei City, Hsin Chu Hsien 302, Taiwan, R.O.C. TEL:03-656-965 FAX:03-656-985

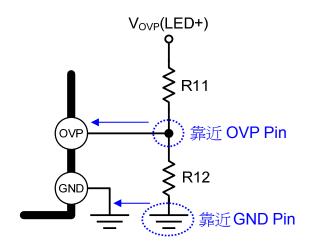


|   | Freq  | Level  |        |        |       |      |       | Factor |     | 1/Pos | Remark | Pol/Phase  |
|---|-------|--------|--------|--------|-------|------|-------|--------|-----|-------|--------|------------|
|   | MHz   | dBuV/m | dBuV/m | dB     | dBuV  | dB   | d8/m  | dB     | cm  | deg   |        |            |
| 1 | 96.93 | 18.47  | 30.00  | -11.53 | 42.72 | 0.84 | 16.53 | 32.37  | 100 | 320   | Peak   | HORIZONTAL |
| 2 | 99.84 | 19.36  | 30.00  | -10.64 | 40.80 | 0.83 | 17.10 | 32.37  | 100 | 249   | Peak   | HORIZONTAL |




| 文件名稱        | 文件名稱     |     |  |  |  |  |  |
|-------------|----------|-----|--|--|--|--|--|
| FP7209 應用說明 | 20201210 |     |  |  |  |  |  |
| FF/203 應用說明 | 版別       | V06 |  |  |  |  |  |

## 常見問題


# a. LED 電流不準確

LED 電流設定值與應用板測試值差異大,取樣電阻 Rs 要靠近 FP7209 的 FB 與 GND Pin,封 裝 SOP-8L(EP)的 GND Pin 在底部散熱片,單層板走線需要特別注意,且要遠離 L1,Q2 的 Drain 與 D1 開闢切換點。



## b. OVP 設定不準,會有跳動

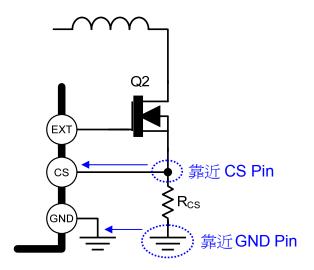
OVP 電壓設定値與應用板測試值差異大,R11 與 R12 要靠近 FP7209 的 OVP 與 GND Pin,封裝 SOP-8L(EP)的 GND Pin 在底部散熱片,單層板走線需要特別注意;且要遠離電感,Q2,L1 開關切換點。



#### c. 電感與開關 NMOS Q2 發熱

電感峰值電流大會造成電感與開關 NMOS Q2 發熱,工作頻率高會造成 Q2 發熱,參考以上應用說明中 b.電感計算,r 設定在 0.3 代入公式求得電感值,若計算為  $40\mu H$ ,選用  $47\mu H$ 。



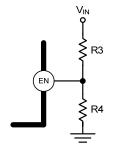

| 文件名稱        | 文化  | 牛日期    |
|-------------|-----|--------|
| ED7200 座田沙田 | 202 | 201210 |
| FP7209 應用說明 |     | V06    |

#### d. 無法升壓

FP7209 封裝 SOP-8L(EP)的地是底部散熱片,散熱片一定要接到板子的地;另外 R<sub>cs</sub> 電阻值是否正確;OVP 電阻 R11 與 R12 是否正確。

#### e. 過電流保護誤動作

設定過電流保護値與應用板測試值差異大,偵測電阻 R<sub>CS</sub> 要靠近 FP7209 的 CS 與 GND Pin,封裝 SOP-8L(EP)的 GND Pin 在底部散熱片,單層板走線需要特別注意。




## f. 加入 EMI 對策元件, NMOS Q2 溫度升高

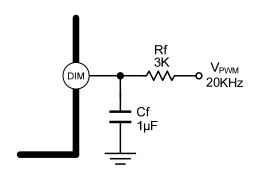
EMI 對策元件 R8(磁珠)、C11=1nF、R9=1.5 $\Omega$ 、C9=1nF、R10=1.5 $\Omega$ 、C10=1nF 會讓 Q2 開關切換損耗增加,造成溫度升高,Q2 加散熱片、增加銅箔面積、增加銅箔厚度,可以幫助散熱,降低工作頻率會減少 Q2 開關切換損耗,也會降低 Q2 溫度,例如 200kHz 降到 150kHz。

### g. HVDD 電壓低於 5V,不能使用 R3、R4 分壓電阻控制 EN 開關

HVDD 電壓低於 5V,不能使用 R3、R4 分壓電阻連接 Vin 與 EN,設定 EN 開啟與關閉電壓,例如單節鋰電池輸入  $3V\sim4.2V$ ,HVDD 是接輸出電壓,當 Vin 降低 EN 關閉,輸出不升壓,HVDD 趨近 Vin,就會低於 5V。

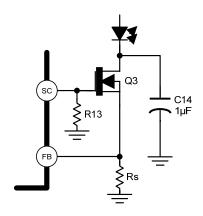





| 文件名稱        | 文件日期     |
|-------------|----------|
| ED7200 库田科明 | 20201210 |
| FP7209 應用說明 | 版別 V06   |

## h. 輸出使用電子負載 CV 模式測試不穩定

輸出使用電子負載 CV 模式測試, EXT Pin 開關方波不穩,導致噪音問題,在電子負載正負兩端加電解電容 100μF~220μF,就能讓方波穩定,解決噪音問題,接 LED 不會有這種問題。


### i. HVDD 電壓低於 5V, DIM 與 FB Pin 調光問題

當輸入電壓低於 5V,例如單節鋰電池應用 3V~4.2V,HVDD Pin 是從 LED+供電,一般白光 LED 至少兩顆串聯,正常工作 VLED 約 6.6V 供電給 HVDD,控制將 FP7209 關閉不升壓,HVDD 只剩下 VBAT 減掉蕭特基管的電壓,已經低於 5V,不能控制 FB Pin 調光;若 PWM 直接控制 DIM Pin 調光,PWM 起始值會從 10.2%變成約 13%,LED 電流 3%變 6%;輸入電壓低於 5V,對調光低電流要求高的應用,如下電路先將 PWM 經過 Rf、Cf 濾波成直流,讓 DIM 變成直流 調光,LED 電流起始值維持 3%。



## j. 開關機短路保護 NMOS(Q3)誤動作

在短路保護 NMOS(Q3)的 Gate 對地加 R13=200k $\Omega$ ,在 SC Pin 未輸出訊號時,確保 NMOS 關閉狀態。

